
xhistogram Documentation
Release .0.3.2+0.g002d6bd.dirty

xhistogram developers

Sep 20, 2022

CONTENTS

1 Why a new histogram package? 3

2 Contents 5

Python Module Index 23

Index 25

i

ii

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

Histograms (a.k.a “binning”) are much more than just a visualization tool. They are the foundation of a wide range
of scientific analyses including [joint] probability distributions and coordinate transformations. Xhistogram makes it
easier to calculate flexible, complex histograms with multi-dimensional data. It integrates (optionally) with Dask, in
order to scale up to very large datasets and with Xarray, in order to consume and produce labelled, annotated data
structures. It is useful for a wide range of scientific tasks.

CONTENTS 1

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

2 CONTENTS

CHAPTER

ONE

WHY A NEW HISTOGRAM PACKAGE?

The main problem with the standard histogram function in numpy and dask is that they automatically act over the
entire input array (i.e. they “flatten” the data). Xhistogram allows you to choose which axes / dimensions you want
to preserve and which you want to flatten. It also allows you to combine N arbitrary inputs to produce N-dimensional
histograms. A good place to start is the Xhistogram Tutorial.

3

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

4 Chapter 1. Why a new histogram package?

CHAPTER

TWO

CONTENTS

2.1 Installation

2.1.1 Requirements

xhistogram is compatible with python 3. It requires numpy and, optionally, xarray.

2.1.2 Installation from Conda Forge

The easiest way to install xhistogram along with its dependencies is via conda forge:

conda install -c conda-forge xhistogram

2.1.3 Installation from Pip

An alternative is to use pip:

pip install xhistogram

This will install the latest release from pypi.

2.1.4 Installation from GitHub

xhistogram is under active development. To obtain the latest development version, you may clone the source repository
and install it:

git clone https://github.com/xgcm/xhistogram.git
cd xhistogram
python setup.py install

or simply:

pip install git+https://github.com/xgcm/xhistogram.git

Users are encouraged to fork xhistogram and submit issues and pull requests.

5

https://pypi.python.org/pypi
https://github.com/xgcm/xhistogram
https://help.github.com/articles/fork-a-repo/
https://github.com/xgcm/xhistogram/issues
https://github.com/xgcm/xhistogram/pulls

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

2.2 Xhistogram Tutorial

Histograms are the foundation of many forms of data analysis. The goal of xhistogram is to make it easy to calculate
weighted histograms in multiple dimensions over n-dimensional arrays, with control over the axes. Xhistogram builds
on top of xarray, for automatic coordiantes and labels, and dask, for parallel scalability.

2.2.1 Toy Data

We start by showing an example with toy data. First we use xarray to create some random, normally distributed data.

1D Histogram

[1]: import xarray as xr
import numpy as np
%matplotlib inline

nt, nx = 100, 30
da = xr.DataArray(np.random.randn(nt, nx), dims=['time', 'x'],

name='foo') # all inputs need a name
display(da)
da.plot()

<xarray.DataArray 'foo' (time: 100, x: 30)>
array([[1.42275651, -0.51171556, -0.35861319, ..., 0.07637755,

1.08344715, 0.16911172],
[0.12762657, 1.37398101, 0.8555511 , ..., -1.18853823,
-2.18461814, -1.64191352],
[0.07222905, 0.12172286, -0.08736727, ..., 0.51628303,
0.49562015, -0.29984425],

...,
[0.29185079, -0.23180969, -0.51562499, ..., 1.18842907,
-0.09055815, 2.2021528],
[0.54692395, -0.17940362, -1.11082126, ..., -2.01808662,
0.15032889, 1.88620498],

[1.66456683, -0.07788249, 0.71951318, ..., 1.74048813,
-0.26434053, -1.11108024]])

Dimensions without coordinates: time, x

[1]: <matplotlib.collections.QuadMesh at 0x7f070e310910>

6 Chapter 2. Contents

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

nbsphinx-code-borderwhite

By default xhistogram operates on all dimensions of an array, just like numpy. However, it operates on xarray DataAr-
rays, taking labels into account.

[2]: from xhistogram.xarray import histogram

bins = np.linspace(-4, 4, 20)
h = histogram(da, bins=[bins])
display(h)
h.plot()

<xarray.DataArray 'histogram_foo' (foo_bin: 19)>
array([0, 3, 7, 37, 51, 113, 234, 333, 469, 488, 445, 381, 217,

135, 54, 25, 5, 2, 1])
Coordinates:
* foo_bin (foo_bin) float64 -3.789 -3.368 -2.947 -2.526 ... 2.947 3.368 3.789

[2]: [<matplotlib.lines.Line2D at 0x7f07061638e0>]

2.2. Xhistogram Tutorial 7

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

nbsphinx-code-borderwhite

TODO: - Bins needs to be a list; this is annoying, would be good to accept single items - The foo_bin coordinate is
the estimated bin center, not the bounds. We need to add the bounds to the coordinates, but we can as long as we are
returning DataArray and not Dataset.

Both of the above need GitHub Issues

Histogram over a single axis

[3]: h_x = histogram(da, bins=[bins], dim=['time'])
h_x.plot()

[3]: <matplotlib.collections.QuadMesh at 0x7f070610f1c0>

8 Chapter 2. Contents

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

nbsphinx-code-borderwhite

TODO: - Relax / explain requirement that dims is always a list

[4]: h_x.mean(dim='x').plot()

[4]: [<matplotlib.lines.Line2D at 0x7f070604a220>]

nbsphinx-code-borderwhite

2.2. Xhistogram Tutorial 9

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

Weighted Histogram

Weights can be the same shape as the input:

[5]: weights = 0.4 * xr.ones_like(da)
histogram(da, bins=[bins], weights=weights)

[5]: <xarray.DataArray 'histogram_foo' (foo_bin: 19)>
array([0. , 1.2, 2.8, 14.8, 20.4, 45.2, 93.6, 133.2, 187.6,

195.2, 178. , 152.4, 86.8, 54. , 21.6, 10. , 2. , 0.8,
0.4])

Coordinates:
* foo_bin (foo_bin) float64 -3.789 -3.368 -2.947 -2.526 ... 2.947 3.368 3.789

Or can use Xarray broadcasting:

[6]: weights = 0.2 * xr.ones_like(da.x)
histogram(da, bins=[bins], weights=weights)

[6]: <xarray.DataArray 'histogram_foo' (foo_bin: 19)>
array([0. , 0.6, 1.4, 7.4, 10.2, 22.6, 46.8, 66.6, 93.8, 97.6, 89. ,

76.2, 43.4, 27. , 10.8, 5. , 1. , 0.4, 0.2])
Coordinates:
* foo_bin (foo_bin) float64 -3.789 -3.368 -2.947 -2.526 ... 2.947 3.368 3.789

2.2.2 2D Histogram

Now let’s say we have multiple input arrays. We can calculate their joint distribution:

[7]: db = xr.DataArray(np.random.randn(nt, nx), dims=['time', 'x'],
name='bar') - 2

histogram(da, db, bins=[bins, bins]).plot()

[7]: <matplotlib.collections.QuadMesh at 0x7f0705fd0070>

10 Chapter 2. Contents

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

nbsphinx-code-borderwhite

2.2.3 Real Data Example

Ocean Volume Census in TS Space

Here we show how to use xhistogram to do a volume census of the ocean in Temperature-Salinity Space

First we open the World Ocean Atlas dataset from the opendap dataset (http://apdrc.soest.hawaii.edu/dods/public_data/
WOA/WOA13/1_deg/annual).

Here we read the annual mean Temparature, Salinity and Oxygen on a 5 degree grid.

[8]: # Read WOA using opendap
Temp_url = 'http://apdrc.soest.hawaii.edu:80/dods/public_data/WOA/WOA13/5_deg/annual/temp
→˓'
Salt_url = 'http://apdrc.soest.hawaii.edu:80/dods/public_data/WOA/WOA13/5_deg/annual/salt
→˓'
Oxy_url = 'http://apdrc.soest.hawaii.edu:80/dods/public_data/WOA/WOA13/5_deg/annual/doxy'

ds = xr.merge([
xr.open_dataset(Temp_url).tmn.load(),
xr.open_dataset(Salt_url).smn.load(),
xr.open_dataset(Oxy_url).omn.load()])

ds

/home/docs/checkouts/readthedocs.org/user_builds/xhistogram/conda/stable/lib/python3.9/
→˓site-packages/xarray/coding/times.py:150: SerializationWarning: Ambiguous reference␣
→˓date string: 1-1-1 00:00:0.0. The first value is assumed to be the year hence will be␣
→˓padded with zeros to remove the ambiguity (the padded reference date string is: 0001-1-
→˓1 00:00:0.0). To remove this message, remove the ambiguity by padding your reference␣

(continues on next page)

2.2. Xhistogram Tutorial 11

http://apdrc.soest.hawaii.edu/dods/public_data/WOA/WOA13/1_deg/annual
http://apdrc.soest.hawaii.edu/dods/public_data/WOA/WOA13/1_deg/annual

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

(continued from previous page)

→˓date strings with zeros.
warnings.warn(warning_msg, SerializationWarning)

/home/docs/checkouts/readthedocs.org/user_builds/xhistogram/conda/stable/lib/python3.9/
→˓site-packages/xarray/coding/times.py:201: CFWarning: this date/calendar/year zero␣
→˓convention is not supported by CF
cftime.num2date(num_dates, units, calendar, only_use_cftime_datetimes=True)

/home/docs/checkouts/readthedocs.org/user_builds/xhistogram/conda/stable/lib/python3.9/
→˓site-packages/xarray/coding/times.py:682: SerializationWarning: Unable to decode time␣
→˓axis into full numpy.datetime64 objects, continuing using cftime.datetime objects␣
→˓instead, reason: dates out of range
dtype = _decode_cf_datetime_dtype(data, units, calendar, self.use_cftime)

/home/docs/checkouts/readthedocs.org/user_builds/xhistogram/conda/stable/lib/python3.9/
→˓site-packages/numpy/core/_asarray.py:83: SerializationWarning: Unable to decode time␣
→˓axis into full numpy.datetime64 objects, continuing using cftime.datetime objects␣
→˓instead, reason: dates out of range
return array(a, dtype, copy=False, order=order)

[8]: <xarray.Dataset>
Dimensions: (time: 1, lev: 102, lat: 36, lon: 72)
Coordinates:
* time (time) object -001-01-15 00:00:00
* lev (lev) float64 0.0 5.0 10.0 15.0 ... 5.2e+03 5.3e+03 5.4e+03 5.5e+03
* lat (lat) float64 -87.5 -82.5 -77.5 -72.5 -67.5 ... 72.5 77.5 82.5 87.5
* lon (lon) float64 -177.5 -172.5 -167.5 -162.5 ... 167.5 172.5 177.5

Data variables:
tmn (time, lev, lat, lon) float32 nan nan nan nan ... nan nan nan nan
smn (time, lev, lat, lon) float32 nan nan nan nan ... nan nan nan nan
omn (time, lev, lat, lon) float32 nan nan nan nan ... nan nan nan nan

Attributes:
long_name: statistical mean sea water temperature [degc]

Use histogram to bin data points. Use canonical ocean T/S ranges, and bin size of 0.10𝐶, and 0.025𝑝𝑠𝑢. Similar ranges
and bin size as this review paper on Mode Waters: https://doi.org/10.1016/B978-0-12-391851-2.00009-X .

[9]: sbins = np.arange(31,38, 0.025)
tbins = np.arange(-2, 32, 0.1)

[10]: # histogram of number of data points
histogram of number of data points
hTS = histogram(ds.smn, ds.tmn, bins=[sbins, tbins])
np.log10(hTS.T).plot(levels=31)

/home/docs/checkouts/readthedocs.org/user_builds/xhistogram/conda/stable/lib/python3.9/
→˓site-packages/xarray/core/computation.py:771: RuntimeWarning: divide by zero␣
→˓encountered in log10
result_data = func(*input_data)

[10]: <matplotlib.collections.QuadMesh at 0x7f0705472c70>

12 Chapter 2. Contents

https://doi.org/10.1016/B978-0-12-391851-2.00009-X

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

nbsphinx-code-borderwhite

However, we would like to do a volume census, which requires the data points to be weighted by volume of the grid
box.

𝑑𝑉 = 𝑑𝑧 * 𝑑𝑥 * 𝑑𝑦 (2.1)

[11]: # histogram of number of data points weighted by volume resolution
Note that depth is a non-uniform axis

Create a dz variable
dz = np.diff(ds.lev)
dz =np.insert(dz, 0, dz[0])
dz = xr.DataArray(dz, coords= {'lev':ds.lev}, dims='lev')

weight by volume of grid cell (resolution = 5degree, 1degree=110km)
dVol = dz * (5*110e3) * (5*110e3*np.cos(ds.lat*np.pi/180))

Note: The weights are automatically broadcast to the right size
hTSw = histogram(ds.smn, ds.tmn, bins=[sbins, tbins], weights=dVol)
np.log10(hTSw.T).plot(levels=31, vmin=11.5, vmax=16, cmap='brg')

[11]: <matplotlib.collections.QuadMesh at 0x7f07053b5af0>

2.2. Xhistogram Tutorial 13

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

nbsphinx-code-borderwhite

The ridges of this above plot are indicative of T/S classes with a lot of volume, and some of them are indicative of
Mode Waters (example Eighteen Degree water with T∼ 18𝑜𝐶, and S∼ 36.5𝑝𝑠𝑢.

Averaging a variable

Next we calculate the mean oxygen value in each TS bin.

𝐴(𝑚,𝑛) =

∑︀
𝑇 (𝑥,𝑦,𝑧)=𝑚,𝑆(𝑥,𝑦,𝑧)=𝑛(𝐴(𝑥, 𝑦, 𝑧)𝑑𝑉)∑︀

𝑇 (𝑥,𝑦,𝑧)=𝑚,𝑆(𝑥,𝑦,𝑧)=𝑛 𝑑𝑉
. (2.2)

[12]: hTSO2 = (histogram(ds.smn.where(~np.isnan(ds.omn)),
ds.tmn.where(~np.isnan(ds.omn)),
bins=[sbins, tbins],
weights=ds.omn.where(~np.isnan(ds.omn))*dVol)/

histogram(ds.smn.where(~np.isnan(ds.omn)),
ds.tmn.where(~np.isnan(ds.omn)),
bins=[sbins, tbins],
weights=dVol))

(hTSO2.T).plot(vmin=1, vmax=8)

[12]: <matplotlib.collections.QuadMesh at 0x7f07042f4ac0>

14 Chapter 2. Contents

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

nbsphinx-code-borderwhite

Some interesting patterns in average oxygen emerge. Convectively ventilated cold water have the highest oxygen and
mode waters have relatively high oxygen. Oxygen minimum zones are interspersed in the middle of volumetic ridges
(high volume waters).

NOTE: NaNs in weights will make the weighted sum as nan. To avoid this, call .fillna(0.) on your weights input
data before calling histogram().

2.2.4 Dask Integration

Should just work, but need examples.

2.3 API

2.3.1 Core Module

Numpy API for xhistogram.

xhistogram.core.histogram(*args, bins=None, range=None, axis=None, weights=None, density=False,
block_size='auto')

Histogram applied along specified axis / axes.

Parameters

args
[array_like] Input data. The number of input arguments determines the dimensionality of
the histogram. For example, two arguments produce a 2D histogram. All args must have the
same size.

2.3. API 15

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

bins
[int, str or numpy array or a list of ints, strs and/or arrays, optional] If a list, there should be
one entry for each item in args. The bin specifications are as follows:

• If int; the number of bins for all arguments in args.

• If str; the method used to automatically calculate the optimal bin width for all arguments
in args, as defined by numpy histogram_bin_edges.

• If numpy array; the bin edges for all arguments in args.

• If a list of ints, strs and/or arrays; the bin specification as above for every argument in
args.

When bin edges are specified, all but the last (righthand-most) bin include the left edge and
exclude the right edge. The last bin includes both edges.

A TypeError will be raised if args or weights contains dask arrays and bins are not speci-
fied explicitly as an array or list of arrays. This is because other bin specifications trigger
computation.

range
[(float, float) or a list of (float, float), optional] If a list, there should be one entry for each
item in args. The range specifications are as follows:

• If (float, float); the lower and upper range(s) of the bins for all arguments in args. Values
outside the range are ignored. The first element of the range must be less than or equal to
the second. range affects the automatic bin computation as well. In this case, while bin
width is computed to be optimal based on the actual data within range, the bin count will
fill the entire range including portions containing no data.

• If a list of (float, float); the ranges as above for every argument in args.

• If not provided, range is simply (arg.min(), arg.max()) for each arg.

axis
[None or int or tuple of ints, optional] Axis or axes along which the histogram is computed.
The default is to compute the histogram of the flattened array

weights
[array_like, optional] An array of weights, of the same shape as a. Each value in a only
contributes its associated weight towards the bin count (instead of 1). If density is True, the
weights are normalized, so that the integral of the density over the range remains 1.

density
[bool, optional] If False, the result will contain the number of samples in each bin. If True,
the result is the value of the probability density function at the bin, normalized such that the
integral over the range is 1. Note that the sum of the histogram values will not be equal to 1
unless bins of unity width are chosen; it is not a probability mass function.

block_size
[int or ‘auto’, optional] A parameter which governs the algorithm used to compute the his-
togram. Using a nonzero value splits the histogram calculation over the non-histogram axes
into blocks of size block_size, iterating over them with a loop (numpy inputs) or in parallel
(dask inputs). If 'auto', blocks will be determined either by the underlying dask chunks
(dask inputs) or an experimental built-in heuristic (numpy inputs).

Returns

hist
[array] The values of the histogram.

16 Chapter 2. Contents

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

bin_edges
[list of arrays] Return the bin edges for each input array.

See also:

numpy.histogram, numpy.bincount, numpy.searchsorted

2.3.2 Xarray Module

Xarray API for xhistogram.

xhistogram.xarray.histogram(*args, bins=None, range=None, dim=None, weights=None, density=False,
block_size='auto', keep_coords=False, bin_dim_suffix='_bin')

Histogram applied along specified dimensions.

Parameters

args
[xarray.DataArray objects] Input data. The number of input arguments determines the di-
mensonality of the histogram. For example, two arguments prodocue a 2D histogram. All
args must be aligned and have the same dimensions.

bins
[int, str or numpy array or a list of ints, strs and/or arrays, optional] If a list, there should be
one entry for each item in args. The bin specifications are as follows:

• If int; the number of bins for all arguments in args.

• If str; the method used to automatically calculate the optimal bin width for all arguments
in args, as defined by numpy histogram_bin_edges.

• If numpy array; the bin edges for all arguments in args.

• If a list of ints, strs and/or arrays; the bin specification as above for every argument in
args.

When bin edges are specified, all but the last (righthand-most) bin include the left edge and
exclude the right edge. The last bin includes both edges.

A TypeError will be raised if args or weights contains dask arrays and bins are not speci-
fied explicitly as an array or list of arrays. This is because other bin specifications trigger
computation.

range
[(float, float) or a list of (float, float), optional] If a list, there should be one entry for each
item in args. The range specifications are as follows:

• If (float, float); the lower and upper range(s) of the bins for all arguments in args. Values
outside the range are ignored. The first element of the range must be less than or equal to
the second. range affects the automatic bin computation as well. In this case, while bin
width is computed to be optimal based on the actual data within range, the bin count will
fill the entire range including portions containing no data.

• If a list of (float, float); the ranges as above for every argument in args.

• If not provided, range is simply (arg.min(), arg.max()) for each arg.

dim
[tuple of strings, optional] Dimensions over which which the histogram is computed. The
default is to compute the histogram of the flattened array.

2.3. API 17

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

weights
[array_like, optional] An array of weights, of the same shape as a. Each value in a only
contributes its associated weight towards the bin count (instead of 1). If density is True, the
weights are normalized, so that the integral of the density over the range remains 1. NaNs
in the weights input will fill the entire bin with NaNs. If there are NaNs in the weights input
call .fillna(0.) before running histogram().

density
[bool, optional] If False, the result will contain the number of samples in each bin. If True,
the result is the value of the probability density function at the bin, normalized such that the
integral over the range is 1. Note that the sum of the histogram values will not be equal to 1
unless bins of unity width are chosen; it is not a probability mass function.

block_size
[int or ‘auto’, optional] A parameter which governs the algorithm used to compute the his-
togram. Using a nonzero value splits the histogram calculation over the non-histogram axes
into blocks of size block_size, iterating over them with a loop (numpy inputs) or in parallel
(dask inputs). If 'auto', blocks will be determined either by the underlying dask chunks
(dask inputs) or an experimental built-in heuristic (numpy inputs).

keep_coords
[bool, optional] If True, keep all coordinates. Default: False

bin_dim_suffix
[str, optional] Suffix to append to input arg names to define names of output bin dimensions

Returns

hist
[xarray.DataArray] The values of the histogram. For each bin, the midpoint of the bin edges
is given along the bin coordinates.

2.4 Contributor Guide

This package is in very early stages. Lots of work is needed.

You can help out just by using xhistogram and reporting issues.

The following sections cover some general guidelines for maintainers and contributors wanting to help develop
xhistogram.

2.4.1 Feature requests, suggestions and bug reports

We are eager to hear about any bugs you have found, new features you would like to see and any other suggestions you
may have. Please feel free to submit these as issues.

When suggesting features, please make sure to explain in detail how the proposed feature should work and to keep the
scope as narrow as possible. This makes features easier to implement in small PRs.

When report bugs, please include:

• Any details about your local setup that might be helpful in troubleshooting, specifically the Python interpreter
version, installed libraries, and xhistogram version.

• Detailed steps to reproduce the bug, ideally a Minimal, Complete and Verifiable Example.

• If possible, a demonstration test that currently fails but should pass when the bug is fixed.

18 Chapter 2. Contents

https://github.com/xgcm/xhistogram/issues
https://github.com/xgcm/xhistogram/issues
http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

2.4.2 Write documentation

Adding documentation is always helpful. This may include:

• More complementary documentation. Have you perhaps found something unclear?

• Docstrings.

• Example notebooks of xhistogram being used in real analyses.

The xhistogram documentation is written in reStructuredText. You can follow the conventions in already written
documents. Some helpful guides can be found here and here.

When writing and editing documentation, it can be useful to see the resulting build without having to push to Github.
You can build the documentation locally by running:

$ # Install the packages required to build the docs in a conda environment
$ conda env create -f doc/environment.yml
$ conda activate xhistogram_doc_env
$ # Install the latest xhistogram
$ pip install --no-deps -e .
$ cd doc/
$ make html

This will build the documentation locally in doc/_build/. You can then open _build/html/index.html in your
web browser to view the documentation. For example, if you have xdg-open installed:

$ xdg-open _build/html/index.html

To lint the reStructuredText documentation files run:

$ doc8 doc/*.rst

2.4.3 Preparing Pull Requests

1. Fork the xhistogram GitHub repository. It’s fine to use xhistogram as your fork repository name because it will
live under your username.

2. Clone your fork locally, connect your repository to the upstream (main project), and create a branch to work on:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/xhistogram.git
$ cd xhistogram
$ git remote add upstream git@github.com:xgcm/xhistogram.git
$ git checkout -b your-bugfix-feature-branch-name master

If you need some help with Git, follow this quick start guide

3. Install dependencies into a new conda environment:

$ conda env create -f ci/environment-3.9.yml
$ conda activate xhistogram_test_env

4. Install xhistogram using the editable flag (meaning any changes you make to the package will be reflected directly
in your environment):

$ pip install --no-deps -e .

2.4. Contributor Guide 19

http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst
https://github.com/xgcm/xhistogram
https://git.wiki.kernel.org/index.php/QuickStart

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

5. Start making your edits. Please try to type annotate your additions as much as possible. Adding type annotations
to existing unannotated code is also very welcome. You can read about Python typing here.

6. Break your edits up into reasonably sized commits:

$ git commit -a -m "<commit message>"
$ git push -u

It can be useful to manually run pre-commit as you make your edits. pre-commit will run checks on the format
and typing of your code and will show you where you need to make changes. This will mean your code is more
likely to pass the CI checks when you push it:

$ pip install pre_commit # you only need to do this once
$ pre-commit run --all-files

7. Run the tests (including those you add to test your edits!):

$ pytest xhistogram

You can also test that your contribution and tests increased the test coverage:

$ coverage run --source xhistogram -m py.test
$ coverage report

8. Add a new entry describing your contribution to the Release History in doc/contributing.rst. Please try to
follow the format of the existing entries.

9. Submit a pull request through the GitHub website.

Note that you can create the Pull Request while you’re working on your PR. The PR will update as you add more
commits. xhistogram developers and contributors can then review your code and offer suggestions.

2.4.4 Release History

v0.3.2

• Fix bug producing TypeError when weights is provided with keep_coords=True GH78. By Dougie Squire.

• Raise TypeError when weights is a dask array and bin edges are not explicitly provided GH12. By Dougie Squire.

v0.3.1

• Add DOI badge and CITATION.cff. By Julius Busecke.

v0.3.0

• Add support for histograms over non-float dtypes (e.g. datetime objects) GH25. By Dougie Squire.

• Refactor histogram calculation to use dask.array.blockwise when input arguments are dask arrays, resulting in
significant performance improvements GH49. By Ryan Abernathy, Tom Nicholas and Gabe Joseph.

• Fixed bug with density calculation when NaNs are present GH51. By Dougie Squire.

• Implemented various options for users for providing bins to xhistogram that mimic the numpy histogram API.
This included adding a range argument to the xhistogram API GH13. By Dougie Squire.

20 Chapter 2. Contents

https://mypy.readthedocs.io/en/stable/getting_started.html#function-signatures-and-dynamic-vs-static-typing
https://pre-commit.com
https://github.com/xgcm/xhistogram
https://github.com/xgcm/xhistogram/issues/78
https://github.com/dougiesquire
https://github.com/xgcm/xhistogram/issues/12
https://github.com/dougiesquire
https://github.com/jbusecke
https://github.com/xgcm/xhistogram/issues/25
https://github.com/dougiesquire
https://github.com/xgcm/xhistogram/issues/49
https://github.com/rabernat
https://github.com/TomNicholas
https://github.com/gjoseph92
https://github.com/xgcm/xhistogram/issues/51
https://github.com/dougiesquire
https://github.com/xgcm/xhistogram/issues/13
https://github.com/dougiesquire

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

• Added a function to check if the object passed to xhistogram is an xarray.DataArray and if not, throw an error.
GH14. By Yang Yunyi.

v0.2.0

• Added FutureWarning for upcoming changes to core API GH13. By Dougie Squire.

• Added documentation on how to deal with NaNs in weights GH26. By Shanice Bailey.

• Move CI to GitHub actions GH32. By James Bourbeau.

• Add documentation for contributors. By Dougie Squire.

• Add type checking with mypy GH32. By Dougie Squire.

v0.1.3

• Update dependencies to exclude incompatible dask version GH27. By Ryan Abernathey.

v0.1.2

• Aligned definition of bins with numpy.histogram GH18. By Dougie Squire.

v0.1.1

Minor bugfix release

• Imroved documentation examples. By Dhruv Balwada.

• Fixed issue GH5 related to incorrect dimension order and dropping of dimension coordinates. By Ryan Aber-
nathey.

v0.1

First release

2.4. Contributor Guide 21

https://github.com/xgcm/xhistogram/issues/14
https://github.com/Badboy-16
https://github.com/xgcm/xhistogram/issues/13
https://github.com/dougiesquire
https://github.com/xgcm/xhistogram/issues/26
https://github.com/stb2145
https://github.com/xgcm/xhistogram/issues/32
https://github.com/jrbourbeau
https://github.com/dougiesquire
https://github.com/xgcm/xhistogram/issues/32
https://github.com/dougiesquire
https://github.com/xgcm/xhistogram/issues/27
https://github.com/rabernat
https://github.com/xgcm/xhistogram/issues/18
https://github.com/dougiesquire
https://github.com/dhruvbalwada
https://github.com/xgcm/xhistogram/issues/5
https://github.com/rabernat
https://github.com/rabernat

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

22 Chapter 2. Contents

PYTHON MODULE INDEX

x
xhistogram.core, 15
xhistogram.xarray, 17

23

xhistogram Documentation, Release .0.3.2+0.g002d6bd.dirty

24 Python Module Index

INDEX

H
histogram() (in module xhistogram.core), 15
histogram() (in module xhistogram.xarray), 17

M
module

xhistogram.core, 15
xhistogram.xarray, 17

X
xhistogram.core

module, 15
xhistogram.xarray

module, 17

25

	Why a new histogram package?
	Contents
	Installation
	Requirements
	Installation from Conda Forge
	Installation from Pip
	Installation from GitHub

	Xhistogram Tutorial
	Toy Data
	1D Histogram
	Histogram over a single axis
	Weighted Histogram

	2D Histogram
	Real Data Example
	Ocean Volume Census in TS Space
	Averaging a variable

	Dask Integration

	API
	Core Module
	Xarray Module

	Contributor Guide
	Feature requests, suggestions and bug reports
	Write documentation
	Preparing Pull Requests
	Release History
	v0.3.2
	v0.3.1
	v0.3.0
	v0.2.0
	v0.1.3
	v0.1.2
	v0.1.1
	v0.1

	Python Module Index
	Index

